SUBGRAPHS OF COLOUR-CRITICAL GRAPHS

M. STIEBITZ

Received 7 May 1985

Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed.

In section 3 arbitrarily large k-critical graphs with n vertices are constructed such that, in order to reduce the chromatic number to k-2, at least $c_k n^2$ edges must be removed.

In section 4 it is proved that a 4-critical graph with n vertices contains at most n triangles. Further it is proved that a k-critical graph which is not a complete graph contains a (k-1)-critical graph which is not a complete graph.

1. Introduction

Most of the concepts used in this paper can be found in [7, pp. 528—540]. All graphs considered are finite, undirected and have neither loops nor multiple edges.

A graph G = (V, E) consists of a set V = V(G) of vertices and a set E = E(G) of edges. The number of vertices and the number of edges of G are denoted by v(G) and e(G), respectively.

For any graphs G_1 and G_2 put $G_1 \cup G_2 = (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$ and $G_1 \cap G_2 = (V(G_1) \cap V(G_2), E(G_1) \cap E(G_2))$. If $F \subseteq E(G)$ then let G - F = (V(G), E(G) - F). For an edge $e = \{P, Q\} \in E(G), G/e$ denotes the graph obtained from $G - \{e\}$ by identifying P and Q and replacing multiple edges by single ones.

 K_n and C_n will denote the complete graph (also called complete n-graph) and the circuit on n vertices, respectively. The circuit C_n is called odd (even) if n is odd (even). $K_d(n_1, n_2, ..., n_d)$ ($d \ge 2$) denotes the complete d-partite graph with $n_1 + ... + n_d$ vertices partitioned into the classes $X_1, ..., X_d, |X_i| = n_i$ (i = 1, ..., d), where two vertices are adjacent if and only if they belong to different classes. Let $T(n, d) = K_d(n_1, ..., n_d)$ with $n_i = \lfloor (n+i-1)/d \rfloor$ (i = 1, ..., d), where $\lfloor x \rfloor$ is the largest integer not greater than x.

A k-colouring of G is a mapping c of V(G) into the set of integers $\{1, 2, ..., k\}$ such that $c(P) \neq c(Q)$ for any two adjacent vertices $P, Q \in V(G)$. The chromatic number $\chi(G)$ of a non-empty graph G is the smallest integer k for which G admits a k-colouring.

A graph G is called critical if $\chi(H) < \chi(G)$ for every proper subgraph H of G and it is called k-critical $(k \ge 1)$ if it is critical and k-chromatic (i.e. $\chi(G) = k$).

Obviously, a connected graph G is critical if and only if $\chi(G - \{e\}) < \chi(G)$ for every edge e of G.

The important notion of critical graphs was introduced by G. A. Dirac [1], [2]; for major contributions to the theory of critical graphs see [3], [11]—[16].

A K_k is an example of a k-critical graph and for k=1, 2 it is the only one. The 3-critical graphs are the odd circuits. Let us mention two constructions of critical graphs:

The Dirac construction. Let G_1 and G_2 be two disjoint graphs with chromatic numbers k_1 and k_2 , respectively. Let $G = G_1 \nabla G_2$ denote the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2 by an edge. Then $\chi(G) = k_1 + k_2$, and G is critical if and only if G_1 and G_2 are critical. This result is due to G. A. Dirac (see [3]).

The Hajós construction. Let G_1 and G_2 be two k-critical graphs $(k \ge 3)$ such that the intersection graph $H = G_1 \cap G_2$ is a complete h-graph with $1 \le h \le k - 2$. Further, for i = 1, 2, let $e_i = \{P, Q_i\} \in E(G_i)$ where $P \in V(H)$, $Q_i \in V(G_i) - V(H)$ and in G_i the vertex Q_i is adjacent to all vertices of H. Put $e = \{Q_1, Q_2\}$. Then the graph G with $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = (E(G_1) \cup E(G_2) \cup \{e\}) - \{e_1, e_2\}$ is k-critical. This result was proved by G. Hajós [5] (for h = 1), G. A. Dirac and G. Gallai (see [3, Satz (2.12)]).

If G_1 and G_2 are complete k-graphs $(k \ge 3)$ and $H = G_1 \cap G_2 \cong K_1$ then the graph obtained by the above Hajós construction is denoted by L_k . Obviously, L_k is a k-critical graph with 2k-1 vertices (note that $L_3 \cong C_5$). Figure 1.1 shows graph L_4 .

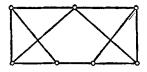


Fig. 1.1

The graph $G = C_n \nabla C_n$ $(n \ge 3$ an odd integer) is, by the Dirac construction, a 6-critical graph with $e(G) \ge \frac{1}{4} v(G)^2$.

In 1970 B. Toft [11] proved that for every $k \ge 4$ there are arbitrarily large k-critical graphs G with many edges, i.e. with $e(G) \ge c_k v(G)^2$ $(c_k > 0)$.

In section 2 it is proved that among the subgraphs of k-critical graphs ($k \ge 4$) with n vertices (n large enough) there exists exactly one having the maximum number of edges, namely, T(n, k-2).

Investigating critical graphs having many edges B. Toft was led to the question (see [14]) whether for a given integer $k \ge 4$ there exist infinitely many k-critical graphs G and a positive constant c_k such that in order to reduce the chromatic number of G to k-2 at least $c_k v(G)^2$ edges must be removed from G. In section 3 we shall give an affirmative answer to this question.

Section 4 deals with critical subgraphs of critical graphs. J. Nešetřil and V. Rödl conjectured (see [14] or [16]) that a large k-critical graph G ($k \ge 4$) contains a large (k-1)-critical subgraph H (i.e. if v(G) tends to infinitely then v(H) tends to infinity). This is true for k=4 (see [6] and [16]) and unsettled for $k \ge 5$. In section 4 it is proved that a k-critical graph which is not a K_k contains a (k-1)-critical subgraph which is not a K_{k-1} . Further, we prove that a 4-critical graph with n vertices contains at most n triangles.

2. Forbidden subgraphs

Let G be a k-critical graph and $e = \{P, Q\}$ an arbitrary edge of G. Then, by definition, $G - \{e\}$ is (k-1)-colourable. Since G is not (k-1)-colourable, we conclude that c(P) = c(Q) for every (k-1)-colouring c of $G - \{e\}$, hence $\chi(G/e) \le k-1$.

Therefore, if H is a subgraph of a k-critical graph then $\chi(H/e) \le k-1$ for every edge e of H. That the converse of this statement is also true was proved by D. Greenwell and L. Lovász [4].

Let us now construct two families of forbidden subgraphs of critical graphs. The graph W(l,d) is defined as $W(l,d) = C_l \nabla K_d$ ($l \ge 3$ and $d \ge 1$) and it is called a d-wheel. A 1-wheel is briefly called a wheel. The d-wheel W(l,d) is called odd (even) if l is odd (even).

By the Dirac construction, an odd d-wheel is a (d+3)-critical graph. An even d-wheel $W = C_{2l} \nabla K_d$ is (d+2)-chromatic and if e is an edge of W which belongs to the circuit C_{2l} then $W/e \cong W(2l-1, d)$, i.e. $\chi(W/e) = d+3$, hence W is not contained in any (d+3)-critical graph. Thus we have obtained

Lemma 2.1. If G is a k-critical graph $(k \ge 4)$ containing W(l, k-3) as a subgraph, then $G \ge W(l, k-3)$ and l is an odd integer.

The graph $T^+(n,d)$ is obtained from T(n,d) $(n>d\geq 2)$ by putting an additional edge into a class of $\lfloor (n+d-1)/d \rfloor$ vertices of T(n,d). Note that T(n,d) is d-chromatic but $T^+(n,d)$ is (d+1)-chromatic and contains a K_{d+1} .

Let $n \ge 2d+1$. Then it is easy to see that there is an edge e in $T^+ = T^+(n, d)$ such that T^+/e contains a K_{d+2} , hence $\chi(T^+/e) \ge d+2$ (see figure 2.1 showing $T^+(7,3)$).

Thus, no subgraph of a (d+2)-critical graph contains $T^+(n, d)$ $(n \ge 2d+1)$ as a subgraph. On the other hand, from the result of Greenwell and Lovász mentioned above we conclude that T(n, d) can be imbedded into a (d+2)-critical graph.

In 1968 M. Simonovits [9] proved the following extremal result:

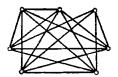


Fig. 2.1

Let H be a (k+1)-chromatic graph $(k \ge 2)$ and assume that $H - \{e\}$ is k-colourable for some edge e of H. Then there is a positive integer n_0 such that for every $n \ge n_0$, among all graphs with n vertices which do not contain H as a subgraph there is exactly one having the maximum number of edges, namely, T(n, k).

As an easy consequence of this result and the above we obtain.

Theorem 2.2. Let $k \ge 4$ be an integer. Then there exists a positive integer $n_0 = n_0(k)$ such that the following statements hold,

(1) If H is a subgraph of a k-critical graph with $v(H) = n \ge n_0$ vertices then $e(H) \le e(T(n, k-2))$, where equality holds if and only if $H \cong T(n, k-2)$.

(2) If G is a k-critical graph with $n \ge n_0$ vertices then e(G) < e(T(n, k-2)).

3. A class of critical graphs

For a graph G and a positive integer k, let $m_k(G) = \min\{|F|| F \subseteq E(G) \text{ and } \chi(G-F) \leq k\}$. Note that $m_l(G) = e(G)$ and $m_l(G) = 0$ for $l \geq \chi(G)$.

If G is k-critical then $m_{k-1}(G)=1$ and one can ask how large $m_{k-2}(G)$ can be. Most of the known k-critical graphs G are "thin" in the sense that $m_{k-2}(G)/v(G)$ is very small.

By constructions of T. Gallai (see [8]), Z. Tuza and V. Rödl [15] it is known that there exist arbitrarily large k-critical graphs $G(k \ge 4)$ with $m_2(G) = \binom{k-2}{2}$ (and this is best possible).

In this section we prove

Theorem 3.1. Let $k \ge 4$. Then there exist a positive constant c_k and arbitrarily large k-critical graphs G such that $m_{k-2}(G) \ge c_k v(G)^2$.

The proof will be given by means of an explicit construction similar to a construction of B. Toft (see [13]). The following result due to J. B. Kelly and L. M. Kelly will be very helpful.

Lemma 3.2 (J. B. Kelly and L. M. Kelly ([6.] Let G be an odd circuit (i.e. G is a 3-critical graph) and let $f: V(G) \rightarrow \{1, 2, 3\}$ be a non-constant function. Then there exists a 3-colouring c of G such that $c(P) \neq f(P)$ for every $P \in V(G)$.

3.1. Construction

- (A) Let $k \ge 3$ be a given integer. The aim of our construction is a (k+1)-critical graph G_k . We start with the k-critical graph L_k introduced in section 1 (L_k is obtained from two complete k-graphs G_1 , G_2 with $G_1 \cap G_2 \cong K_1$ by Hajós' construction). The proof of the following simple result is left to the reader.
- **Lemma 3.3.** (a) In any k-colouring of L_k one of the k colours occurs exactly once and all other colours occur exactly twice in L_k .
- (b) Let P and Q be two non-adjacent vertices of L_k , $P \neq Q$. Then there exists a k-colouring c of L_k such that $c^{-1}(1) = \{P_1\}$, $c^{-1}(2) = \{P, Q\}$, $c^{-1}(3) = \{P', Q'\}$, and P_1 is not adjacent to P' in L_k .
- (c) For every edge $e = \{P, Q\}$ of L_k there exists a k-colouring c of L_k satisfying c(P)=2, c(Q)=3 and $c^{-1}(1)=\{P_1\}$ where P_1 is neither adjacent to P nor to Q in L_k .
- (B) For every $P \in V(L_k)$ fix a set X(P) of at least two elements where the X(P)'s are pairwise disjoint. Put $M = \{X(P) | P \in V(L_k)\}$. Now define the graph $H_k = L_k(M)$ as follows:

$$V(H_k) = \bigcup M$$

$$E(H_k) = \{\{a, b\} | a \in X(P) \in M, b \in X(Q) \in M, \text{ and } \{P, Q\} \in E(L_k)\}.$$

Put $F_k = \{X(P) \cup X(Q) | P, Q \in V(L_k), P \neq Q, \{P, Q\} \notin E(L_k)\}$. Note that the sets of F_k are independent sets in H_k .

We say that a k-colouring c of $H_k = L_k(M)$ has the property U_3 with respect to $F' \subseteq F_k$ if there exists a set $Y \in F'$ such that $c(Y) = \{\alpha\}$ for some $\alpha \in \{1, 2, 3\}$.

Next we shall prove the following crucial result.

- **Lemma 3.4.** (1) Every k-colouring of H_k has the property U_3 with respect to F_k . (2) For every $Y \in F_k$ there is a k-colouring of H_k which does not have the property U_3 with respect to $F_k \{Y\}$.
- (3) For every edge e of H_k there is a k-colouring of $H_k \{e\}$ which does not have the property U_3 with respect to F_k .
- **Proof.** Let c be an arbitrary k-colouring of H_k . It is easy to see that |c(X)|=1 for all but at most one set $X \in M$. Thus (1) is a simple consequence of Lemma 3.3(a).
- Proof of (2). Let $Y = X(P) \cup X(Q) \in F_k$. Then P and Q are non-adjacent in L_k and there is a k-colouring c of L_k satisfying (b) of Lemma 3.3 (we choose the same notation). Now colour the vertices of X(P') with 1 and 3 such that both colours occur and, for $R \in V(L_k) \{P'\}$, assign colour c(R) to all vertices of X(R). Obviously, the k-colouring of H_k obtained this way does not have the property U_3 with respect to $F_k \{Y\}$.
- **Proof of (3).** Let $e = \{a, b\}$ be an edge of H_k where $a \in X(P)$ and $b \in X(Q)$. Let c be a k-colouring of L_k satisfying (c) of Lemma 3.3 with respect to the edge $\{P, Q\}$ of L_k (we choose the same notation). Give colour c(R) to all the vertices of

X(R), for $R \in V(L_k)$, except for the vertices a and b, which are both coloured with 1. This proves (3).

(C) For $Y \in F_k$, let C_Y denote an odd circuit with at least |Y| vertices. Further, let G' denote a (k-3)-critical graph (if k=3 then G' is empty) and let us assume that $H_k = L_k(M)$, G' $C_Y(Y \in F_k)$ are pairwise disjoint. Put $C = \{C_Y | Y \in F_k\}$. From the graphs $L_k(M)$, G', $C_Y(Y \in F_k)$ we obtain a graph $G_k = G(L_k(M), C, G')$ as follows: for every $Y \in F_k$, join each vertex of Y to one or more vertices of C_Y by an edge so that each vertex of C_Y is joined to precisely one vertex of Y.

Then join all vertices of C_Y , $Y \in F_k$, to all vertices of G'. Denote the graph obtained this way by G_k .

Lemma 3.5. G_k is (k+1)-critical.

Proof. We prove that G_k is not k-colourable, but $G_k - \{e\}$ is k-colourable for every edge e of G_k .

Suppose that G_k has a k-colouring, c. Since G' is (k-3)-critical, under c each of the odd circuits C_Y , $Y \in F_k$, has exactly the same three different colours, say 1, 2 and 3. But this contradicts Lemma 3.4 (see (1)). Hence $\chi(G_k) \ge k+1$. It is easy to see that $G_k - \{e\}$ has a k-colouring for every e of G_k . Let us consider the most important case, where e is an edge of $H_k = L_k(M)$. By Lemma 3.4 (see (3)), there is a k-colouring c of $H_k - \{e\}$ which does not have the property U_3 with respect to F_k . Give colour $\{0, 1, \dots, k\}$ to the vertices of $\{0, \dots, k\}$ to $\{0, \dots, k\}$ to the vertices of $\{0, \dots, k\}$ to $\{0, \dots, k\}$ to $\{0, \dots, k\}$ to the vertices of $\{0, \dots, k\}$ to $\{0, \dots, k\}$

We are now ready to prove Theorem 3.1. For $n \ge 2$ let G_k^n $(k \ge 3)$ denote the graph $G(L_k(M), C, G')$ where |X| = n for $X \in M$, $|V(C_Y)| = 2n + 1$ for $Y \in F_k$ and $G' \cong K_{k-3}$. Then G_k^n is a (k+1)-critical graph and there is a positive constant c_k such that $v(G_k^n) \le c_k n$ and $m_{k-1}(G_k^n) \ge n^2$.

3.2. Some remarks

- **3.2.1.** The fact that $L_3(M)$ is a subgraph of some 4-critical graph I learned from V. Rödl. Using different ideas V. Rödl obtained other examples of 4-critical graphs and proved the following stronger result (perconal communication): For every $k \ge 2$ there exist a positive constant c_k and infinitely many 4-critical graphs G without odd circuits C_1 of length $1 \le 2k-1$ such that $m_2(G) \ge c_k v(G)^2$.
- **3.2.2.** B. Toft drew my attention to the fact that the above examples of 4-critical graphs not only solve his problems but also provide a best possible negative answer to a question of T. Gallai, who asked (see [11]) whether Lemma 3.2 can be extended to 4-critical graphs (B. Sørensen and B. Toft proved that such a result does not hold for k-critical graphs with $k \ge 5$, see [13]).

Theorem 3.6. There exists a 4-critical graph G and a non constant function $f: V(G) \rightarrow \{1, 2, 3\}$ such that for any 4-colouring c of G there is always a vertex P of G with c(P) = f(P).

Proof. Let $G = G_3^3 = G(L_3(M), C, G')$ be the 4-critical graph of the above construction, where each of the five classes of M consists of precisely three elements. Choose f so that f takes all values 1, 2, 3 on each of the five classes of M. Clearly, this proves Theorem 3.6 (note that $L_3 \cong C_5$).

3.2.3. Let S_k denote the set of all proper subgraphs of k-critical graphs. In connection with the above construction the author was led to the following.

Conjecture 3.7. For every $k \ge 4$ there exists a positive constant c_k such that for every $H \in S_k$ there is a k-critical graph G with at most $c_k v(H)$ vertices containing H as a subgraph.

Let us mention the following partial results.

Theorem 3.8. (B. Toft [13]). For every $k \ge 4$ there exists a constant M_k such that every (k-2)-colourable graph H is contained in a k-critical graph G of at most $2v(H)+M_k$ vertices.

Theorem 3.9. (H. Sachs and M. Stiebitz [9]). Let $k \ge 4$ and $\alpha \ge 1$. Then there exists a constant $c = c_{k,\alpha}$ such that any connected graph $H \in S_k$ is contained as an induced subgraph in a k-critical graph G having the following properties.

- (a) In G every vertex of H has degree $\geq \alpha$,
- (b) every vertex of G-H has degree k-1, and
- (c) $v(G) \leq ce(H) \leq cv(H)^2$.

4. Critical subgraphs of critical graphs

The following two problems are due to T. Gallai (oral communication).

Problem 4.1. Let G be a k-critical graph $(k \ge 4)$ on n vertices.

- **(4.1.1)** Is it true that the number of (k-1)-critical subgraphs of G is $\ge n$?
- **(4.1.2)** Is it true that the number of complete (k-1)-graphs contained in G is $\le n$ with equality if and only if $G \cong K_k$?

In 1974 B. Toft proved.

Theorem 4.2. (B. Toft [12]). Let G be a k-critical graph $(k \ge 3)$ and let e_1 and e_2 be any two edges of G. Then there is a (k-1)-critical subgraph of G containing e_1 , but not containing e_2 .

Let $H_1, H_2, ..., H_l$ be all (k-1)-critical subgraphs of a k-critical graph G. Further, for an edge e of G, let A(e) denote the set of all those integers i $(1 \le i \le l)$ for which e belongs to H_i . Then $A(e) \subseteq \{1, 2, ..., l\}$ and, by Theorem 4.2, none of these sets contains another one. Therefore,

$$v(G) \le e(G) \le \binom{l}{\lfloor l/2 \rfloor} \le 2^{l}$$

and we obtain

Theorem 4.3. A k-critical graph $(k \ge 4)$ on n vertices containes at least $\log_2 n$ subgraphs which are (k-1)-critical.

Next we prove

Theorem 4.4. Let G be a 4-critical graph on n vertices. Then the number of triangles in G is $\leq n$.

The proof uses linear algebra. Some further notation is needed.

Let G be a graph and let $V(G) = \{P_1, P_2, ..., P_n\}$. Further, let $T_k(G) = \{H | H \text{ is a subgraph of } G \text{ and } H \cong K_k\}$ and define, for every graph $H \in T_k(G)$, a vector $v_H = (v_1, ..., v_n)^T$ where

$$v_i = \begin{cases} 1 & \text{if } P_i \in V(H) \\ 0 & \text{otherwise.} \end{cases}$$

Put $t_k(G) = |T_k(G)|$. Instead of Theorem 4.4 we prove the following stronger result.

Theorem 4.4'. Let G be a 4-critical graph. Then the vectors $v_H(H \in T_3(G))$ are linearly independent over GF(2).

Proof. If G is a K_4 , then this is obvious. Therefore, in what follows, let us assume that G is not a K_4 . For $e \in E(G)$ or $P \in V(G)$, let d(e: T') and d(P: T') denote the number of all graphs from $T' \subseteq T_3(G)$ containing e or P, respectively. Now we prove the following two statements from which Theorem 4.4' is an easy consequence.

Let
$$T' \subseteq T_3(G)$$
, $T' \neq \emptyset$. Then

- (A) there is an edge e of G such that $d(e: T') \equiv 1 \pmod{2}$, and
- **(B)** there is a vertex P of G such that $d(P: T') \equiv 1 \pmod{2}$.

Proof of (A). Assume that d(e: T') is even for every edge e of G. Let P be a vertex of G which belongs to some graph of T', and let $H_1, H_2, ..., H_r \in T'$ be all those graphs containing P. Put $G' = H_1 \cup H_2 \cup ... \cup H_r$ and $G'' = G' - \{P\}$. From the assumption we conclude that all vertices of G'' have even degrees in G'' and therefore, G'' contains a circuit. Since P is adjacent to all vertices of G'' it follows that $G' \subseteq G$ contains a wheel. Then, by Lemma 2.1, G is an odd wheel and, clearly, G holds (note that $G \ncong K_4$).

Proof of (B). Because of (A), there is an edge in G, say $e = \{P_1, P_2\}$, such that $d(e: T') \equiv 1 \mod 2$. Since G is 4-critical, there exists a 3-colouring c of $G - \{e\}$ with $c(P_1) = c(P_2) = 1$. Let $X = \{P | P \in V(G) \text{ and } c(P) \in \{2, 3\}\}$: then, for $H \in T'$

$$|V(H) \cap X| = \begin{cases} 1, & \text{if } e \in E(H); \\ 2, & \text{otherwise.} \end{cases}$$

Therefore,

$$\sum_{P \in X} d(P \colon T') = d(e \colon T') + 2(|T'| - d(e \colon T'))$$

and, because d(e: T') is odd, there is a vertex $P \in X$ for which d(P: T') is odd.

Remark 4.5. Let G be a k-critical graph $(k \ge 5)$. Further, let $T' \subseteq T_{k-1}(G)$ and suppose that G is not a K_k . By a similar argument as in the proof of (A), it can be shown that there exists a set of k-3 vertices of G contained in an odd number of graphs from T'. Therefore, we obtain $t_{k-1}(G) \le \binom{n}{k-3}$ where n=v(G).

On the other hand we can prove

Theorem 4.6. For every $k \ge 4$ there exists a $c_k > 0$ such that there are arbitrarily large k-critical graphs G with v(G) = n and $t_l(G) \ge c_k n^l$ for l = 2, 3, ..., k-2.

Proof. Let $n \ge 2$ and $H_n = K_l(n, n, ..., n)$ $(2 \le l \le k - 2)$. Then, by Theorem 3.8, there is a k-critical graph G containing H_n as a subgraph for which $v(G) \le c'n$. Clearly, $t_l(G) \ge n^l$.

The following result was conjectured by J. Nešetřil and B. Toft (oral communication). Note that this result would be a simple consequence of an affirmative answer to Problems 4.1.1 and 4.1.2.

Theorem 4.7. If G is a k-critical graph $(k \ge 4)$ all of whose (k-1)-critical subgraphs are isomorphic to K_{k-1} , then G is isomorphic to K_k .

Proof. Clearly, G contains a (k-1)-critical subgraph and therefore, there is a K_3 in G. Let e_1 , e_2 and e_3 be three edges of G forming a K_3 . From Theorem 4.2 we conclude that G contains two (k-1)-critical subgraphs, say H_1 , H_2 , where H_i contains e_i but does not contain e_3 (i=1,2). By the assumption, H_1 and H_2 are both complete (k-1)-graphs, thus $e_2 \notin E(H_1)$, $e_1 \notin E(H_2)$ and $H = H_1 \cap H_2$ is a complete graph, say, on h vertices where $1 \le h \le k-2$. If h=k-2 then the graph G obtained from $H_1 \cup H_2$ by adding the edge e_3 is a complete k-graph which is contained in G and therefore, $G \cong K_k$. If h < k-2 then, by the Hajós construction, $G' = (V(H_1) \cup V(H_2), (E(H_1) \cup E(H_2) \cup \{e_3\}) - \{e_1, e_2\})$ is a (k-1)-critical subgraph of G which is not isomorphic to K_{k-1} , contradicting the assumption.

As a simple consequence, we obtain

Theorem 4.8. Let G be a k-critical graph $(k \ge 4)$ which is not a complete k-graph. Then, for every h $(3 \le h \le k-1)$, there exists a h-critical subgraph of G which is not a complete h-graph.

Investigating critical subgraphs of critical graphs the author was led to the following.

Conjecture 4.9. Let G be a k-critical graph $(k \ge 4)$ which is not a complete k-graph. Then there exists a (k-1)-critical subgraph of G which is not an induced subgraph of G.

References

- [1] G. A. DIRAC, A property of 4-chromatic graphs, J. London Math. Soc. 27 (1952), 85—92.
- [2] G. A. DIRAC, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69—81.
- [3] T. GALLAI, Kritische Graphen I, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 165-192.
- [4] D. Greenwell and L. Lovász, Applications of product colouring, *Acta Math. Acad. Sci. Hungar.* 25 (1974), 335-340.
- [5] G. HAJÖS, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin Luther Univ. Halle-Wittenberg Math. Nat. X/1 (1961), 116—117.
- [6] J. B. Kelly and L. M. Kelly, Paths and circuits in critical graphs, Amer. J. Math. 76 (1954), 786—792.
- [7] L. Lovász, Combinatorial Problems and Exercises, Akad. Kiadó, Budapest 1979.
- [8] F. Nielsen and B. Toft, On a class of 4-chromatic graphs due to T. Gallai, in: Recent advances in Graph Theory, Proceedings of the Symposium held in Prague, June 1974, Acad. Prague 1975, 425—430.
- [9] H. SACHS and M. STIEBITZ, Construction of colour-critical graphs with given major-vertex subgraphs, *Annals of Discr. Math.* 17 (1983), 581–598.
- [10] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc. Colloq. Tihany, 1966, Academic Press, New York, 1968.
- [11] B. Toft, On the maximal number of edges of critical k-chromatic graphs, Studia Sci. Math. Hung. 5 (1970), 461—470.
- [12] B. Toft, On critical subgraphs of colour-critical graphs, Discrete Math. 7 (1974), 377-392.
- [13] B. Toft, Color-critical graphs and hypergraphs, J. Comb. Theory Ser. B 16 (1974), 145-161.
- [14] B. Toft, Graph colouring: A survey of some problems and results, in: Proc. of the Second Danish-Polish Math. Programming Seminar DAPS 79, DIKU Univ. of Copenhagen, Report. No 80, April 1980, 351—363.
- [15] Z. Tuza and V. Rödl, On colour critical graphs, J. Comb. Th. B. 38 (1985), 204-213.
- [16] H. J. Voss, Graphs with prescribed maximal subgraphs and critical chromatic graphs, Comment. Math. Univ. Carol. 18 (1977), 129—142.

M. Stiebitz

Technische Hochschule Ilmenau DDR--6300 Ilmenau, PSF 327 German Democratic Republik